Step by step Guide in Applying Nodal and Mesh Analysis

Nodal Analysis:

Given a circuit, follow these steps:

1) Identify the N nodes. One of these will be the ground node (which is usually at the bottom of the circuit. The ground node voltage is 0 V and is used as the reference voltage with which the other voltages will be compared.)

Label the voltage at each node (except the ground node) by the node voltages $v_a, v_b, ...$ (or $v_1, v_2, ...$). Henceforth, I will refer to these node voltages as $v_a, v_b, ...$.

- 2) With N nodes, we next write N-1 independent equations. At each node (except for the ground node) apply KCL. In doing this we will end up with N-1 equations with v_a , v_b , ... as the variables to be solved for.
- 3) Solve the set of N-1 simultaneous equations. This gives the values for v_a, v_b, \dots
- 4) If you need to find current levels in the circuit, use the node voltages $(v_a, v_b, ...)$ to write the appropriate equations.

Mesh Analysis:

Given a circuit, follow these steps:

1) Identify the meshes (i.e. loops that do not contain other loops) in the circuit. Label the mesh currents by currents $i_a, i_b, ...$ (or $i_1, i_2, ...$). Henceforth, I will refer to these mesh currents as $i_a, i_b, ...$.

Draw the currents in the circuit (usually in a clockwise direction).

- 2) Assuming N loops (meshes) have been identified. For each loop apply KVL around the loop. This results in N independent equations.
- 3) Solve the N simultaneous equations. This results in finding the values for i_a, i_b, \dots .
- 4) If you need to find voltage levels in the circuit, use the mesh currents $(i_a, i_b, ...)$ to write the appropriate equations.